If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-29=0
a = 8; b = 0; c = -29;
Δ = b2-4ac
Δ = 02-4·8·(-29)
Δ = 928
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{928}=\sqrt{16*58}=\sqrt{16}*\sqrt{58}=4\sqrt{58}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{58}}{2*8}=\frac{0-4\sqrt{58}}{16} =-\frac{4\sqrt{58}}{16} =-\frac{\sqrt{58}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{58}}{2*8}=\frac{0+4\sqrt{58}}{16} =\frac{4\sqrt{58}}{16} =\frac{\sqrt{58}}{4} $
| -(x+4)=5=4x+1-5x | | 4x+4+2x=70 | | 2(6m+3)=3(4m+3) | | 3g-21+9g=1-g | | -3(5r+6)=72 | | 48=|-9x+15| | | 195=-4(1-6x)+7 | | 3g+-21+9g=1-g | | 4=3(2n-4) | | 2(3s+2)=10 | | -2x=-3x=8 | | y^2-13=6-5y^2 | | 4+5r=-4r-1+8r | | 17.95p=71.80 | | -2x+9+3x=18 | | -n-24=5-3n | | -2=1/2x+1=4 | | 7x+10+x=90 | | (1)/(2)x-3=(3)/(2)x+4 | | 6-4x=31+x | | 2(x-1)+x=6-(2x=3) | | -3(n+3)=54 | | 32/12=x/24 | | 59x+2=59x+95 | | 3+7x+3x=103 | | 0=-6/t | | 28x+3=28x+44 | | 7c/6-c-6=0 | | 2x=64+1x | | 2m-(9-4m)=16=m | | 4(v+12)=76 | | 2x-2+7x=70 |